Models and methods of deep learning in medical image recognition and classification tasks
I.A. Pshenokova, M.R. Kiyasov
Upload the full text
Abstract: The paper presents a study and analysis of deep learning models and methods in the problems of recognition and classification of brain tumor images. To compare the effectiveness of the most relevant and available models based on convolutional neural networks, the VGG19, Xception, and ResNet152 models were selected. The Xception model showed the best results. The purpose of this work is to optimize and train the selected model using various methods to improve the accuracy of diagnosing human brain tumors. A strategy for improving this model using transfer learning and data augmentation methods is proposed and implemented. The tests show that the improved model demonstrates higher accuracy and resistance to various types of data distortions, which makes it more effective for image recognition and classification tasks.
Keywords: image recognition methods, deep learning methods, convolutional neural networks, transfer learning methods
For citation. Pshenokova I.A., Kiyasov M.R. Models and methods of deep learning in medical image recognition and classification tasks. News of the Kabardino-Balkarian Scientific Center of RAS. 2025. Vol. 27. No. 2. Pp. 103–112. DOI: 10.35330/1991-6639-2025-27-2-103-112
References
- Bishop C.M. Pattern recognition and machine learning (Information Science and Statistics). Springer. New York. 2007. ISBN: 0-387-31073-8
- Li Z. et al. A survey of convolutional neural networks: analysis, applications, and prospects. IEEE transactions on neural networks and learning systems. 2021. Vol. 33. No. 12. Pp. 6999–7019. DOI: 10.1109/TNNLS.2021.3084827
- Byra M. et al. Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion. Medical physics. 2019. Vol. 46. No. 2. Pp. 746–755. DOI: 10.1002/mp.13361
- Horiuchi Y. et al. Convolutional neural network for differentiating gastric cancer from gastritis using magnified endoscopy with narrow band imaging. Digestive diseases and sciences. 2020. Vol. 65. Pp. 1355–1363. DOI: 10.1007/s10620-019-05862-6
- Wang J. et al. Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton. Journal of Bionic Engineering. 2022. Vol. 19. No. 5. Pp. 1359–1373. DOI: 10.1007/s42235-022-00230-z
- Bhandari D., Paul S., Narayan A. Deep neural networks for multimodal data fusion and affect recognition. International Journal of Artificial Intelligence and Soft Computing. 2020. Vol. 7. No. 2. Pp. 130–145. DOI: 10.1504/IJAISC.2020.113475
- Srivastava A., Singh A., Tiwari A. K. An efficient hybrid approach for the prediction of epilepsy using CNN with LSTM. International Journal of Artificial Intelligence and Soft Computing. 2022. Vol. 7. No. 3. Pp. 179–193. DOI: 10.1504/IJAISC.2022.126336
- Khan H.A. et al. Brain tumor classification in MRI image using convolutional neural network. Mathematical Biosciences and Engineering. 2021. Vol. 17. No. 5. Pp. 6203–6216. DOI: 10.3934/mbe.2020328
- Houssein E.H. et al. Hybrid quantum-classical convolutional neural network model for COVID-19 prediction using chest X-ray images. Journal of Computational Design and Engineering. 2022. Vol. 9. No. 2. Pp. 343–363. DOI: 10.1093/jcde/qwac003
- Раскопина А. С., Боженко В. В., Татарникова Т. М. Использование глубокого обучения при диагностировании пневмонии по рентгеновским снимкам. Известия высших учебных заведений. Приборостроение. 2024. Т. 67. № 4. С. 315–320. DOI: 10.17586/0021-3454-2024-67-4-315-320
- Raskopina A.S., Bozhenko V.V., Tatarnikova T.M. Using deep learning in diagnosing pneumonia from X-ray images. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyeniye [News of higher educational institutions. Instrument engineering]. 2024. Vol. 67. No. 4. Pp. 315–320. DOI: 10.17586/0021-3454-2024-67-4-315-320. (In Russian)
- Wan C. et al. Research on classification algorithm of cerebral small vessel disease based on convolutional neural network. Journal of Intelligent & Fuzzy Systems. 2023. Vol. 44. No. 2. Pp. 3107–3114.
- Ashtari-Majlan M., Seifi A., Dehshibi M.M. A multi-stream convolutional neural network for classification of progressive MCI in Alzheimer’s disease using structural MRI images. IEEE Journal of Biomedical and Health Informatics. 2022. Vol. 26. No. 8. Pp. 3918–3926. DOI: 10.1109/JBHI.2022.3155705
- Ekong F. et al. Bayesian depth-wise convolutional neural network design for brain tumor MRI classification. Diagnostics. 2022. Vol. 12. No. 7. P. 1657. DOI: 10.3390/diagnostics12071657
- Apostolopoulos I.D., Aznaouridis S., Tzani M. An attention-based deep convolutional neural network for brain tumor and disorder classification and grading in magnetic resonance imaging. Information. 2023. Vol. 14. No. 3. P. 174. DOI: 10.3390/info14030174
- Shi Y. et al. Residual convolutional neural network-based stroke classification with electrical impedance tomography. IEEE Transactions on Instrumentation and Measurement. 2022. Vol. 71. Pp. 1–11. DOI: 10.1109/TIM.2022.3165786
- Щетинин Е. Ю., Севастьянов Л. А. О методах переноса глубокого обучения в задачах классификации биомедицинских изображений // Информатика и ее применения. 2021. Т. 15. № 4. С. 59–64. DOI: 10.14357/19922264210408. EDN: YQXVAA
- Shchetinin E.Yu., Sevastyanov L.A. On deep learning transfer methods in biomedical image classification problems. Informatika i yeyo primeneniya [Computer Science and Its Applications]. 2021. Vol. 15. No. 4. Pp. 59–64. DOI: 10.14357/19922264210408. EDN: YQXVAA (In Russian)
- Щукина Н. А. Нейросетевые модели в задаче классификации медицинских изображений // Моделирование, оптимизация и информационные технологии. 2021. Т. 9. № 4(35). DOI: 10.26102/2310-6018/2021.35.4.022. EDN: MXPABV
- Shchukina N.A. Neural network models in the problem of classification of medical images. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii [Modeling, Optimization and Information Technology]. 2021. Vol. 9. No. 4(35). DOI: 10.26102/2310-6018/2021.35.4.022. EDN: MXPABV. (In Russian)
- Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. 2014. DOI: 10.48550/arXiv.1409.1556
- Khan A. et al. A survey of the recent architectures of deep convolutional neural networks. Artificial intelligence review. 2020. Vol. 53. Pp. 5455–5516.
- Набор данных МРТ опухоли головного мозга [Электронный ресурс]. URL: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset
- Nabor dannykh MRT opukholi golovnogo mozga [Brain tumor MRI dataset]. [Electronic resource]. URL: https://www.kaggle.com/datasets/masoudnickparvar/brain-tumor-mri-dataset. (accessed 10.03.2025)
Information about the authors
Inna A. Pshenokova, Candidate of Physical and Mathematical Sciences, Head of the Laboratory of Intelligent Living Environments, Institute of Computer Science and Problems of Regional Management – branch of Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences;
360000, Russia, Nalchik, 37-a I. Armand street;
Associate Professor of the Department of Computer Technology and Information Security, Kabardino-Balkarian State University named after Kh.M. Berbekov;
360004, Russia, Nalchik, 173 Chernyshevsky street;
pshenokova_inna@mail.ru, ORCID: https://orcid.org/0000-0003-3394-7682, SPIN-code: 3535-2963
Murat R. Kiyasov, 4th year Student in the Field of Informatics and Computer Science; Kabardino-Balkarian State University named after Kh.M. Berbekov;
360004, Russia, Nalchik, 173 Chernyshevsky street;myrat7450@mail.ru